Characterizing and Supporting Hybrid Learning Scenarios to Foster Students' Development of Mathematical Concepts and Problem-Solving Competencies Manuel Santos-Trigo Cinvestav México Characterizing and Supporting Hybrid Learning Scenarios to Foster Students' Development of Mathematical Concepts and Problem-Solving Competencies # Context: What have we learned from school work during the social confinement? # Tools, mathematics and mathematics education Mathematics developments and results can be traced and explained in terms of what tools individuals or groups used to formulate and solve problems Greek mathematicians relied on the straightedge and compass to work on geometry problems. Euclid (325 BC) introduced the axiomatic method to support and validate mathematical results Tools amplify human cognition (memory, computation, representation, etc.) Descartes (1596-1650) introduced the coordinate systems to the study of geometry (analytic geometry) Babylonian mathematicians (1830-1531) used clay tablets to register problems, methods, and results in arithmetic, geometry and equations Currently, digital technologies are shaping the way we work on mathematical problems Polya's four intertwined problem-solving phases: Understanding the problem, devising a solution plan, carrying out the plan, and looking back. The importance of heuristics methods (Based on his own experience, introspective approach, 1945) Schoenfeld, 1985: Four dimensions that shape the students' problem solving performances: Resources or knowledge base to face problems, the use of heuristics to understand problem statements; the use of selfmonitoring and control strategies to make decisions; and the students' conception and beliefs about mathematics and problem solving Ruthven (2022) proposed three dimensions to support the integration of digital technologies in school mathematical practices. The ergonomic (interaction between humans and digital tools), epistemological (disciplinary and didactical knowledge to use the tools), and the existencial dimensions (conception of self and subject that shape the use of the tools). # Essential components to frame problem-solving instruction - An inquisitive or inquiry approach to delve into concepts and to work on mathematical problems. Mathematics as a set of dilemmas to elucidate and solve - Tasks, problems or mathematical situations, embedded in different contexts, are the vehicle to engage students in mathematical practices and posing and discussion questions are key activities for students to learn concepts and to solve problems - Looking for multiple or different ways or methods to represent and solve mathematical problems is important for learners to contrast concepts and strategies associated with each solution approach - Learning mathematics and solving problems involve a continuous process in which students openly discuss and refine their ideas within a community that values and foster individual and collective participation and contributions How online platforms (Khan Academy, Wikipedia, etc.) address concepts that appear in the problem statement? How you contrast your teacher' explanation or presentation of those concepts with those that appear in the platforms? Do you find similar examples o solved problem online? What strategies are important to solve those problems? Can solution methods of those examples be used to solve the task? Resources A problem-solving approach A digital Wall or problem-solving digital notebook What questions did you pose to understand the problem? Did you need help? Did you receive feedback from you teacher? Did you discuss and share your ideas with your peers? How can you represent the problem? Is it possible to model it dynamically? Can you use the Cartesian system to explore the behavior of some object attributes? Do you find some relationships between attributes? Do you find some relationships between attributes? Can you graph or visualize the behavior of those relations? can you find different ways to solve the problem? Can you extend the initial problem or pose new questions? Support System #### A problem-solving approach - An inquiry or questioning method - Different types of tasks and contexts (cognitive demands) - Sense making activities and habits of mind - Multiple ways to approach the task - Learning as a continuous refinement process #### A digital Wall or problem-solving digital notebook - Short videos - Students' notes - Students' questions and concerns - Problem solutions - Posed problems - Students' self-assessment #### Support system - Teacher and experts' feedback - Peers' assessment - Synchronous tools (chats) and discussion forums #### Resources - Online platforms (Khan Academy, Wikipedia) - Communication Apps (Zoom, Teams, etc.) - DGS (GeoGebra) - Discussion Forums # A task: What mathematical questions could you formulate? A tank or container of water is filled with one tap in four hrs and another tap fills the same tank in 6 h, how much time is needed to fill the same tank when both taps are open at the same time? # The use of a Cartesian system, slopes <u>A dynamic model</u> # Dynamic model ## The use of a Cartesian system, volume # Dynamic model How online platforms (Khan Academy, Wikipedia, etc.) address concepts that appear in the problem statement? How you contrast your teacher' explanation or presentation of those concepts with those that appear in the platforms? Do you find similar examples o solved problem online? What strategies are important to solve those problems? Can solution methods of those examples be used to solve the task? #### Resources Problematizing the use of Wiki contents Analysis and critic of Khan Academy videos and teacher's lectures #### A problem-solving approach An algebraic approach A dynamic model Focusing on variation of two sides of octagon and the position of E Connecting the length of DE and ratio of EL & EF #### A digital Wall How can you represent the problem? Is it possible to model it dynamically? Can you use the Cartesian system to explore the behavior of some object attributes? Do you find some relationships between attributes? Can you graph or visualize the behavior of those relations? can you find different ways to solve the problem? Can you extend the initial problem or pose new questions? #### Support System Teacher's short online lectures Teacher' feedback via chats and email #### A problem-solving approach - What elements and data are important in the picture? - How long does it take to fill the container with tap 1 or 2? - What about filling the same container with opening the two taps? - How can you represent the relevant information in a Cartesian system? - Can you associated the filling rate of each tap with the slope of a line? #### A digital Wall or problem-solving digital notebook - Short videos: word problems, slope, linear model - Students' questions and concerns - Problem solutions - Posed problems - Students' self-assessment #### Support - Technical support - Teacher and experts' feedback - Peers' assessment - Synchronous tools (chats) and discussion forums #### Resources - Online platforms (Khan Academy, Wikipedia) - Communication Apps (Zoom, Teams, etc.) - DGS (GeoGebra) - Discussion Forums The construction of a dynamic model: How to represent the given perimeter and diagonal geometrically? Can you draw a rectangle if you know its perimeter and its diagonal? An ellipse approach Representing and exploring phenomena that involve change or variation A dynamic model and a variation task Online resources and platforms they consult to contextualize problems and review and extend their understanding of involved concepts Identification and analysis of oncepts and strategies used to solve the problem Questions they pose to understand concepts and problem statements Different ways to solve a mathematical problem. The type of problems for students to work include problems like those discussed during the class, those that can be solved by the same methods but differ from those solved in instruction and new problems that were not addressed in class sessions. Online resources and platforms they consult to contextualize problems and review and extend their understanding of involved concepts Concepts and strategies used to solve the problem Different ways to solve a mathematical problem. The type of problems for students to work include problems like those discussed during the class, those that can be solved by the same methods but differ from those solved in instruction and new problems that were not addressed in class sessions. Identification of other problems that can be solved with the methods that were used to solve the initial problem Dynamic models used to solve the problem and strategies used to identify and explore mathematical relations (dragging objects, measuring object attributes, tracing loci, using sliders, etc.) Formulation of new related problems including possible extensions for the initial problem Digital technologies and online resources used to solve the problem Discussion of solutions of some new problems Short recorded video presentation of their work and problem solutions Reflection on how their problem solutions relied on other peers' ideas and the extent to which their own work influenced and shaped the group work Thankyou