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Two measurement problems give rise to intractable systems of linear equations. By 

making a heuristic assumption on the measurement errors, least square estimates 

emerge as approximate solutions. An elegant generalisation to more complicated 

problems is afforded by the theory of Euclidean space, particularly orthogonal 

projection. This is an attempt to make the connection explicit. Orthogonality still 

plays a crucial role in the current, statistical view on least square estimation, which 

lies in the heart of the ubiquitous technique of linear regression.  
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Least square estimation, in linear regression or other kinds of problem, is one of the most 

widely used numerical techniques in data analysis. In undergraduate education, the topic is 

treated in greater detail in statistic courses than mathematics courses, but neither are likely to 

draw out the intimate connection with orthogonal projection in Euclidean spaces. Perhaps the 

mathematicians think it is too simple, and the statisticians think it is too hard. The statistical 

view is now predominant, though both deterministic and stochastic versions were invented at 

the about the same time, around 200 years ago. For a fascinating account of the least square’s 

origin in the context of astronomical investigations, see Stigler (1990). 

 

An outline of this article is as follows. In two simplest measurement problems, the desired 

quantities are unattainable, for they are solutions of intractable systems of linear equations. By 

making heuristic assumptions on the measurement errors, it becomes possible to estimate the 

quantities by minimising a function: the least square estimates. They turn out to be intimately 

connected with the Euclidean space, which is motivated by coordinate geometry. The 

orthogonal projection is defined and applied to the two problems, before its connection to a 

general measurement problem is elicited. Finally, a current statistical formulation of least 

square estimation is presented, where certain stochastic assumptions are made on the 

measurement errors, which underpins the application of regression in all kinds of problems.  

Case 1: Measuring a Constant 

A number of measurements are made of a physical constant, such as the mass of a piece of 

metal. The same protocol is used throughout, and environmental factors are kept as constant as 

possible. Nevertheless, if the instrument is sufficiently sensitive, say the weighing scale reads 

to the nearest microgram, the measurements are unlikely to be all the same. There are errors in 

the measurements, which may be taken to be additive. Let 𝑚 be the true mass, and 𝑦1, … , 𝑦𝑛 

be the measurements. Then we can write 

𝑦𝑖 = 𝑚 + 𝑒𝑖, 𝑖 = 1, … , 𝑛,          (1) 
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where 𝑒1, … , 𝑒𝑛 are the measurement errors. The goal is to determine the value of 𝑚.    

 

The measurements (𝑦1, … , 𝑦𝑛) are known. (𝑒1, … , 𝑒𝑛, 𝑚) are unknown, and are a solution to 

the system of equations 

𝑥𝑖 + 𝑥𝑛+1 = 𝑦𝑖 , 𝑖 = 1, … , 𝑛.          (2) 

Since the system has only 𝑛 equations, it has no unique solution. In fact, there are infinitely 

many solutions. Clearly, one solution is (𝑦1, … , 𝑦𝑛, 0). It cannot be correct, for 𝑚 > 0. Let 𝜆 

be any real number. Then (𝑦1 − 𝜆, … , 𝑦𝑛 − 𝜆, 𝜆) is another solution. We have obtained an 

infinite set of solutions, which can be written as 
{(𝑦1 − 𝜆, … , 𝑦𝑛 − 𝜆, 𝜆): 𝜆 ∈ ℝ}.          (3) 

Conversely, any solution must belong to this set. Let 𝑒1
∗, … , 𝑒𝑛

∗ , 𝑚∗ be a solution, i.e., 

𝑒𝑖
∗ + 𝑚∗ = 𝑦𝑖, 𝑖 = 1, … , 𝑛. 

Consequently, for every 𝑖, 𝑒𝑖
∗ = 𝑦𝑖 − 𝑚∗. Hence, it is indeed of the given form, with 𝜆 = 𝑚∗. 

The correct solution, with 𝜆 = 𝑚, lies in the set, but we have no way of identifying it from the 

infinite possibilities. 

 

It seems likely that numerous experiences gave rise to the hunch that the errors tend to cancel 

each other out, so that their mean 𝑒̅ should be quite close to 0. This is a key insight, for then 

the mean of the measurements will be close to 𝑚: 

𝑦̅ = 𝑚 + 𝑒̅ ≈ 𝑚. 
We say 𝑦̅ is an estimate of 𝑚. The deviations of the measurements are 

𝑑𝑖 = 𝑦𝑖 − 𝑦̅, 𝑖 = 1, … , 𝑛. 
Since 𝑒𝑖 = 𝑦𝑖 − 𝑚 ≈ 𝑦𝑖 − 𝑦̅, 𝑑𝑖 is an estimate of 𝑒𝑖. Note that ∑ 𝑑𝑖

𝑛
𝑖=1 = 0: the deviations 

cancel each other like ideal errors, while the actual errors may not.  

  

Let us look at the problem from another angle. Suppose we use 𝑧 as an estimate of 𝑚. The 

heuristic that errors should cancel suggests the quality of 𝑧 can be gauged by how close it is to 

all the measurements. A possible distance is the sum of absolute differences ∑ |𝑦𝑖 − 𝑧|𝑛
𝑖=1 , 

though for ease of manipulation the sum of squared differences is preferable: 

𝑆(𝑧) = ∑(𝑦𝑖 − 𝑧)2

𝑛

𝑖=1

. 

It turns out that 𝑧 = 𝑦̅ is the unique minimiser of 𝑆(𝑧). Hence 𝑦̅ is called the least square 

estimate of 𝑚. Indeed, since the deviations sum to 0, 

𝑆(𝑧) = ∑([𝑦𝑖 − 𝑦̅] + [𝑦̅ − 𝑧])2 =

𝑛

𝑖=1

 ∑ 𝑑𝑖
2 + 2 ∑ 𝑑𝑖(𝑦̅ − 𝑧)

𝑛

𝑖=1

+ 𝑛(𝑦̅ − 𝑧)2

𝑛

𝑖=1

 

= ∑ 𝑑𝑖
2 + 𝑛(𝑦̅ − 𝑧)2

𝑛

𝑖=1

, 

which has the minimum value ∑ 𝑑𝑖
2𝑛

𝑖=1  at 𝑧 = 𝑦̅, and at no other value. 

 

Clearly, the further 𝑒̅ is away from 0, the worse 𝑦̅ estimates 𝑚. It is not possible to verify that 

𝑒̅ ≈ 0, for the mean of the deviations is 0. Rather, the measurement protocol has to be tested 

against an external standard, such as an object of known weight. Then the associated errors are 

known too. This kind of comparison is regularly conducted in many government laboratories, 

and plays a key role in calibrating measurement systems. 
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In summary, here is a guide on analysing measurements of an unknown constant 𝑚: 

𝑦𝑖 = 𝑚 + 𝑒𝑖, 𝑖 = 1, … , 𝑛. 
Suppose the errors 𝑒1, … , 𝑒𝑛 roughly cancel each other, i.e., their mean 𝑒̅ ≈ 0. Then 𝑚 can be 

estimated satisfactorily by the mean of the measurements 𝑦̅, which is the least square estimate. 

Case 2: Measuring a Constant Effect 

Suspend a weight from a metal rod, and its length will increase by an amount proportional to 

the weight, provided the weight does not exceed a certain amount, called the elastic limit. 

Suppose for 𝑖 = 1, … , 𝑛, the length 𝑦𝑖 is measured when the known weight 𝑥𝑖 is suspended. 

We assume 𝑥1, … , 𝑥𝑛 are all less than the elastic limit and are not all equal. Then we have 

𝑦𝑖 = 𝑐 + 𝑏𝑥𝑖 + 𝑒𝑖 , 𝑖 = 1, … , 𝑛          (4) 

where 𝑐 and 𝑏 are constants to be estimated. 𝑐 is the natural length of the rod; 𝑏 is the extension 

per unit weight in some unit, which might be called the effect of weight on length1. The errors 

made in the length measurements 𝑒1, … , 𝑒𝑛 are also unknown.  

 

Like in the previous problem, we assume that 

𝑒̅ =
1

𝑛
∑ 𝑒𝑖 ≈ 0, 𝑥𝑒̅̅ ̅ =

1

𝑛
∑ 𝑥𝑖

𝑛

𝑖

𝑛

𝑖

𝑒𝑖 ≈ 0.          (5) 

The first says the errors roughly cancel each other. The second says that the errors are 

independent of the weights. We seek the least square estimates of 𝑐 and 𝑏, by minimising 

𝑆(𝑧1, 𝑧2) = ∑(𝑦𝑖 − [𝑧1 + 𝑧2𝑥𝑖])2

𝑛

𝑖=1

. 

For an elementary treatment of this minimisation, see the meticulously instructive Freedman 

& Lane (1981). Here, we use calculus. The two partial derivatives are 

𝑆1(𝑧1, 𝑧2) = −2 ∑(

𝑛

𝑖=1

𝑦𝑖 − 𝑧1 − 𝑧2𝑥𝑖), 

𝑆2(𝑧1, 𝑧2) = −2 ∑ 𝑥𝑖(

𝑛

𝑖=1

𝑦𝑖 − 𝑧1 − 𝑧2𝑥𝑖). 

Setting both to 0 gives  

𝑦̅ − 𝑧1 − 𝑧2𝑥̅ = 𝑥𝑦̅̅ ̅ − 𝑧1𝑥̅ − 𝑧2𝑥2̅̅ ̅ = 0,          (6) 

where 

𝑥̅ =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖

, 𝑦̅ =
1

𝑛
∑ 𝑦𝑖, 𝑥2̅̅ ̅ =

1

𝑛
∑ 𝑥𝑖

2, 𝑥𝑦̅̅ ̅ =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖

𝑦𝑖 .

𝑛

𝑖

𝑛

𝑖

 

Solving the equations gives the unique stationary point: 

𝑧2 = 𝑏̂ =
𝑥𝑦̅̅ ̅ − 𝑥̅𝑦̅

𝑥2̅̅ ̅ − 𝑥̅2
, 𝑧1 = 𝑐̂ = 𝑦̅ − 𝑏̂𝑥̅, 

That this is indeed a minimum can be confirmed by checking that the second derivative matrix, 

the Hessian, has positive diagonal entries and a positive determinant. As will be seen, the theory 

of Euclidean space offers a purely algebraic justification. 

 

 
1 The constants have units, like metre for 𝑐 and metre per kilogram for 𝑏, though this does not concern us here. 
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Let us verify that the estimates make sense. Putting (5) into (4) gives 𝑦̅ ≈ 𝑐 + 𝑏𝑥̅ and 𝑥𝑦̅̅ ̅ ≈

𝑐𝑥̅ + 𝑏𝑥2̅̅ ̅. Hence 

𝑏̂ =
𝑥𝑦̅̅ ̅ − 𝑥̅𝑦̅

𝑥2̅̅ ̅ − 𝑥̅2
≈

𝑐𝑥̅ + 𝑏𝑥2̅̅ ̅ − 𝑥̅(𝑐 + 𝑏𝑥̅)

𝑥2̅̅ ̅ − 𝑥̅2
= 𝑏, 

meaning 𝑏̂ is quite accurate, which implies the same for 𝑐̂, since 𝑐̂ = 𝑦̅ − 𝑏̂𝑥̅ ≈ 𝑐. The residuals 

are 

𝑑𝑖 = 𝑦𝑖 − (𝑐̂ + 𝑏̂𝑥𝑖), 𝑖 = 1, … , 𝑛, 

which are estimates of the errors, like the deviations in the previous case. Substituting 𝑧1 = 𝑐̂ 

and 𝑧2 = 𝑏̂ into (6) gives  

∑ 𝑑𝑖 =

𝑛

𝑖

∑ 𝑥𝑖𝑑𝑖 =

𝑛

𝑖

0. 

Hence the residuals behave like ideal errors. As before, assumptions (5) must be checked by 

pitting the protocol for measuring length against an external standard, such as a rod of known 

length and known extension per unit weight. 

An Orthogonal Interlude 

The two cases are the simplest examples of least square estimation. The associated mathematics 

is worth studying due to its practical utility, and because it contains the germ for the general 

theory. This section attempts to present the concepts from Euclidean spaces that are necessary 

to grasp the relevance of orthogonal projection. Two key theorems are proved using a collection 

of intuitive facts. For further details on these prerequisite results, the interested reader may 

consult any of the numerous textbooks, such as Blyth & Robertson (2002) or Lang (1997). 

  

Imagine a straight rod sticking out of flat ground at an angle, i.e., 𝑂𝑃 is not vertical, where 𝑂 

is the point of contact with the ground and 𝑃 is the other end of the rod. A vertical light casts a 

shadow 𝑂𝑄 of the rod on the ground, so that 𝑃𝑄 is vertical, or perpendicular to the ground. We 

say the shadow is the orthogonal projection of the rod on the ground. Similarly, in the plane, 

given a line through the origin 𝑂 and a point 𝑃 not on the line, we can construct a point 𝑄 on 

the line, so that 𝑂𝑄𝑃 is a right angle. 𝑂𝑄 is the orthogonal projection of 𝑂𝑃 on the line. It turns 

out that orthogonal projection in high-dimensional spaces offers a beautiful algebraic solution 

of the minimization problem in least square estimation. To get there, we need some working 

knowledge of the Euclidean space, which will be presented in three stages.  

 

The first stage is an outgrowth of coordinate geometry. For a positive integer 𝑛, the 𝑛-

dimensional Euclidean space ℝ𝑛 is the set of vectors consisting of 𝑛 real numbers. Intuitively, 

the vector 𝒙 = (𝑥1,…, 𝑥𝑛) specifies a point 𝑃 in an abstract space. Let 𝒚 = (𝑦1,…, 𝑦𝑛) specify 

the point 𝑄. The dot product of 𝒙 and 𝒚 is 

𝒙 ∙ 𝒚 = ∑ 𝑥𝑖𝑦𝑖

𝑛

𝑖=1

 . 

The distance between 𝑃 and 𝑄 is |𝒙 − 𝒚| = √(𝒙 − 𝒚) ∙ (𝒙 − 𝒚). In particular, |𝒙| is the 

distance between 𝑃 and the origin 𝑂, specified by 𝟎 = (0,…, 0). If 𝒙 ∙ 𝒚 = 0, 𝒙 and 𝒚 are 

orthogonal. Let 𝒛 = (𝑧1,…, 𝑧𝑛) specify the point 𝑅, and suppose 𝑃, 𝑄 and 𝑅 are distinct. The 

line segments 𝑃𝑅 and 𝑄𝑅 are perpendicular, written 𝑃𝑅 ⊥ 𝑄𝑅, if 𝒛 − 𝒙 and 𝒛 − 𝒚 are 

orthogonal. The Pythagoras Theorem says that if 𝑃𝑅 ⊥ 𝑄𝑅, then |𝒙 − 𝒚|2 = |𝒛 − 𝒙|2 +
|𝒛 − 𝒚|2. The definitions of distance, orthogonality and perpendicularity, and hence the 
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Pythagoras Theorem, are in complete accord with the geometry of Euclid. This is because the 

definitions are chosen such that ℝ3 and ℝ2 correspond to space and a plane respectively. 

 

In low dimensions (𝑛 = 2, 3), the distance formula is a fact2 about the plane and the space. 

Similarly, 𝒙 ∙ 𝒚 = |𝒙||𝒚| cos 𝜃, where 𝜃 is the angle between 𝑂𝑃 and 𝑂𝑄. Suppose 𝒙 is not 

equal to a constant multiple of 𝒚, i.e., 𝑂𝑃𝑄 is not a straight line, and that 𝜃 is acute, as in the 

figure. Let 𝒖 = 𝒙/|𝒙| , so that |𝒖| = 1. It follows from trigonometry that 𝑂𝑅, the orthogonal 

projection of 𝑂𝑄 on 𝑂𝑃, has length |𝒚| cos 𝜃 = 𝒖 ∙ 𝒚. Hence the point 𝑅 is specified by 

(𝒖 ∙ 𝒚)𝒖 =
𝒙∙𝒚

|𝒙|𝟐 𝒙. Indeed, the fact that 𝑂𝑅 ⊥ 𝑅𝑄 is readily verified by  

𝒙 ∙ (𝒚 −
𝒙 ∙ 𝒚

|𝒙|𝟐
𝒙) = 0. 

 

                                                                                   Q 

 

 

 

                                                     O       θ                              P    

              R 

 

Figure: OR is the orthogonal projection of OQ to OP 

 

 

Definition 1. Let 𝒙, 𝒚 ∈ ℝ𝑛 be non-zero vectors, such that 𝒙 is not equal to a constant multiple 

of 𝒚. The orthogonal projection of 𝒚 on the line containing 𝒙 is defined as 
𝒙∙𝒚

|𝒙|𝟐 𝒙.  

 

This is the simplest case of orthogonal projection, but is sufficient to apply to Case 1.  

  

Example: Measuring a constant The measurements 𝑦1, … , 𝑦𝑛 form a vector 𝒚 ∈ ℝ𝑛. Let 𝒛 =
𝑧𝒙, where 𝒙 = (1, … ,1), so that 𝑆(𝑧) = |𝒚 − 𝒛|2. Since 𝑆(𝑧) is minimised at 𝑧 = 𝑦̅, its 

minimum value is |𝒚 − 𝑦̅𝒙|2. Now we have 𝒙 ∙ 𝒚 = ∑ 𝑦𝑖
𝑛
𝑖=1  and |𝒙|𝟐 = 𝑛 , so the orthogonal 

projection of 𝒚 on the line containing 𝒙 is 𝑦̅𝒙. The proximity of the orthogonal projection to 

the least square estimate is not a coincidence, as we will see later. Notice that (1) can be written  

𝒚 = 𝑚𝒙 + 𝒆 

where 𝒆 = (𝑒1, … , 𝑒𝑛) is the vector of measurement errors. 

 

The second stage makes the rough idea of the “line containing 𝒙” in Definition 1 exact, which 

is often part of a course on vector spaces. Let 𝒖1, … , 𝒖ℎ ∈ ℝ𝑛 be non-zero vectors. Given 

coefficients 𝜆1, … , 𝜆ℎ ∈ ℝ, 𝜆1𝒖1 + ⋯ + 𝜆ℎ𝒖ℎ is called a linear combination, which is also a 

vector. Denote the set of all linear combinations of 𝒖1, … , 𝒖ℎ by 
〈𝒖1, … , 𝒖ℎ〉 = {𝜆1𝒖1 + ⋯ + 𝜆ℎ𝒖ℎ: 𝜆1, … , 𝜆ℎ ∈ ℝ}. 

This set is called the subspace generated by 𝒖1, … , 𝒖ℎ. Clearly, every subspace contains 𝟎. In 

ℝ2, lines that pass through the origin are one-dimensional subspaces. In ℝ3, planes and lines 

that pass through the origin are respectively two- and one-dimensional subspaces. Here are 

some general facts and definitions about the subspace 𝑉 = 〈𝒖1, … , 𝒖ℎ〉 of ℝ𝑛. It is always 

possible to choose a subset {𝒗1, … , 𝒗𝑘} ⊆ {𝒖1, … , 𝒖ℎ}, where 𝑘 ≤ ℎ, such that for any 𝒗 ∈ 𝑉, 

 
2 This is empirical: the formula gives the distance between two points in a real plane or space to a high accuracy. 
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there is only one set of coefficients 𝑐1, … , 𝑐𝑘 such that 𝒗 = 𝑐1𝒗1 + ⋯ + 𝑐𝑘𝒗𝑘. In particular, 

𝑉 = 〈𝒗1, … , 𝒗𝑘〉. The dimension of 𝑉 is dim(𝑉) = 𝑘, and 𝑐1, … , 𝑐𝑘 are the coordinates of 𝒗 

with respect to the basis 𝒗1, … , 𝒗𝑘. Among the generating vectors, we might be able to choose 

different bases, but the number of vectors in any basis is always 𝑘. For example, let 𝒗1 =
(1,0,0), 𝒗2 = (0,1,0), 𝒗3 = (1,1,0). Since (0,0,0) = 0𝒗1 + 0𝒗2 + 0𝒗3 = 1𝒗1 + 1𝒗2 − 1𝒗3, 

the three vectors are not a basis of  𝑉 = 〈(1,0,0), (0,1,0), (1,1,0)〉, the 𝑥𝑦-plane in ℝ3. Clearly, 

{𝒗1, 𝒗2} is a basis, so dim(𝑉) = 2. In fact, any two vectors form a basis. For 𝑘 < 𝑛, a 𝑘-

dimensional subspace of ℝ𝑛 is like a copy of ℝ𝑘 in ℝ𝑛.    

 

The standard basis of ℝ𝑛 consists of the 𝑛 vectors (1,0,0, … ,0,0), (0,1,0, … ,0,0), …, 

(0,0,0, … ,0,1). The coordinates of any vector with respect to the standard basis are none other 

than its component entries. A basis 𝒗1, … , 𝒗𝑘 is orthonormal if 𝑖 = 1, … , 𝑘, |𝒗𝑖| = 1 and 𝒗𝑖 ∙
𝒗𝑗 = 0 for any 𝑖 ≠ 𝑗. The standard basis of ℝ𝑛 is orthonormal. Any basis can be converted into 

an orthonormal basis for the same subspace, by the Gram-Schmidt process.    

 

We are now ready for the general concept of orthogonal projection. 

 

Theorem 1. Let 𝑉 be a subspace with an orthonormal basis 𝒗1, … , 𝒗𝑘. Given 𝒚 ∈ ℝ𝑛, define 

𝒚𝑉 = (𝒚 ∙ 𝒗1)𝒗1 + ⋯ + (𝒚 ∙ 𝒗𝑘)𝒗𝑘 . 
(i) 𝒚𝑉 ∈ 𝑉, and 𝒚 − 𝒚𝑉 ⊥ 𝑉, meaning  𝒚 − 𝒚𝑉 is orthogonal to every vector of 𝑉. 

(ii) The squared distance |𝒚 − 𝒛|2, with 𝒛 ∈ 𝑉, is uniquely minimized by 𝒛 = 𝒚𝑉. 

 

Proof. Being a linear combination of 𝒗1, … , 𝒗𝑘, 𝒚𝑉 ∈ 𝑉. Since 𝒗1, … , 𝒗𝑘 are an orthonormal 

basis, for each 𝒗𝑖, 𝒚𝑉 ∙ 𝒗𝑖 = 𝒚 ∙ 𝒗𝑖, or (𝒚 − 𝒚𝑉) ∙ 𝒗𝑖 = 0. Hence 𝒚 − 𝒚𝑉 ⊥ 𝑉. Next, given 𝒛 ∈
𝑉, we have 𝒚𝑉 − 𝒛 ∈ 𝑉. From (i), (𝒚 − 𝒚𝑉) ∙ (𝒚𝑉 − 𝒛) = 0, implying 

|𝒚 − 𝒛|2 = |(𝒚 − 𝒚𝑉) + (𝒚𝑉 − 𝒛)|2 = |𝒚 − 𝒚𝑉|2 + |𝒚𝑉 − 𝒛|2. 
Hence |𝒚 − 𝒛|2 is minimised by 𝒛 = 𝒚𝑉. It is unique, for if there is another minimiser 𝒚𝑉

∗ , then 

replacing 𝒛 by 𝒚𝑉
∗  in the equation implies |𝒚𝑉 − 𝒚𝑉

∗ |2 = 0, which contradicts the assumption 

that 𝒚𝑉
∗ ≠ 𝒚𝑉. ∎ 

 

Definition 2. Let 𝒚 ∈ ℝ𝑛, and 𝑉 be a subspace. 𝒚𝑉 is the orthogonal projection of 𝒚 on 𝑉.  

 

Theorem 1 (ii) implies that 𝒚𝑉 is the unique vector in 𝑉 with property (i). Since 𝒚 − 𝒚𝑉 ⊥ 𝒚𝑉,  

|𝒚|2 = |𝒚 − 𝒚𝑉|2 + |𝒚𝑉|2, 
which can be visualised as a right triangle, in any dimension. 

 

The third stage involves elementary facts of matrix algebra, to prepare for Theorem 2, which 

generalises the formula in Definition 1, with multiplication by a matrix inverse replacing 

division. A 𝑘 × 𝑘 matrix 𝑨 is invertible if there is a 𝑘 × 𝑘 matrix 𝑩 such that 𝑨𝑩 = 𝑩𝑨 = 𝑰. 

𝑩 is called the inverse of 𝑨, and we write 𝑩 = 𝑨−1. Given an 𝑛 × 𝑘 matrix 𝑿 with entry 𝑎𝑖𝑗 at 

row 𝑖 and column 𝑗, the transpose of 𝑿 is the 𝑘 × 𝑛 matrix with 𝑎𝑖𝑗 at row 𝑗 and column 𝑖, 

denoted by 𝑿′. The rank of an 𝑛 × 𝑘 matrix is the dimension of the subspace of ℝ𝑛 generated 

by its columns. Hence its rank cannot be larger than 𝑛 or 𝑘. If the rank of an 𝑛 × 𝑘 matrix 𝑿 is 

𝑘, then 𝑿′𝑿 is invertible. 
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Theorem 2. Let 𝑿 be the 𝑛 × 𝑘 matrix with 𝒗𝑗 in column 𝑗, where the 𝑘 vectors form a basis 

of a subspace 𝑉 of ℝ𝑛. Let 𝒚 ∈ ℝ𝑛 be written as a column vector. Then the orthogonal 

projection of 𝒚 on 𝑉 is 

𝒚𝑉 = 𝑿(𝑿′𝑿)−1𝑿′𝒚. 
Furthermore, the coordinates of 𝒚𝑉 is (𝑿′𝑿)−1𝑿′𝒚. 

 

Proof. Since 𝑿′𝑿 is invertible, (𝑿′𝑿)−1 is well-defined. 𝒗𝑖 ∙ (𝒚 − 𝒚𝑉) is the 𝑖-th entry of the 

matrix product: 

𝑿′(𝒚 − 𝒚𝑉) = 𝑿′𝒚 − 𝑿′(𝑿(𝑿′𝑿)−1𝑿′𝒚) = 𝟎. 
Hence 𝒚 − 𝒚𝑉 is orthogonal to every vector in 𝑉. By Theorem 1, 𝒚𝑉 is the orthogonal projection 

of 𝒚 on 𝑉. Write the 𝑘 × 1 matrix (𝑿′𝑿)−1𝑿′𝒚 as (𝜆1, … , 𝜆𝑘)′. Then 𝒚𝑉 = 𝑿(𝜆1, … , 𝜆𝑘)′ =
𝜆1𝒗1 + ⋯ + 𝜆𝑘𝒗𝑘, which shows that 𝒚𝑉 ∈ 𝑉, and its coordinates are 𝜆1, … , 𝜆𝑘. ∎  

Example: Measuring a constant effect Let 𝒛 = 𝑧1𝟏 + 𝑧2𝒙, where 𝒙 = (𝑥1, … , 𝑥𝑛) is the vector 

of weights. Since 𝑆(𝑧1, 𝑧2) = |𝒚 − 𝒛|2, Theorem 1 says the minimising 𝒛 is the orthogonal 

projection 𝒚𝑉, where 𝑉 = 〈𝟏, 𝒙〉. Let 𝑿 = [𝟏 𝒙]. It is straightforward, if tedious, to check that 

(𝑿′𝑿)−1𝑿′𝒚 = (𝑐̂ , 𝑏̂)′, the least square estimates. Since 𝑥1, … , 𝑥𝑛 are not all equal, dim(𝑉) =

2. By Theorem 2, 𝒚𝑉 = 𝑿(𝑐̂ , 𝑏̂)′ = 𝑐̂𝟏 + 𝑏̂𝒙. Indeed, (6) holds with 𝑧1 = 𝑐̂, 𝑧2 = 𝑏̂, which says 

that 𝒚 − (𝑐̂𝟏 + 𝑏̂𝒙) is orthogonal to both 𝟏 and 𝒙, and therefore also orthogonal to every vector 

in 𝑉. Note that (4) can be written as 𝒚 = 𝑿(𝑐, 𝑏)′ + 𝒆, where 𝒚 and 𝒆 are the column vectors 

of measurements and errors. 

 

It is marvelous that the orthogonal projection is the global minimiser of 𝑆 in the two cases, so 

that there is no need for tedious computations involving the Hessian. The second case offers 

such a good glimpse into the general case that the subsequent connection should seem rather 

familiar. 

General Case 

Here is the general measurement problem. For 𝑖 = 1, … , 𝑛, we fix the values of 𝑝 variables, 

called covariates, at 𝑥𝑖1, … , 𝑥𝑖𝑝, and measure the response variable to get 𝑦𝑖. Suppose there are 

constants 𝛽1, … , 𝛽𝑝 such that  

𝑦𝑖 = 𝑥𝑖1𝛽1 + ⋯ + 𝑥𝑖𝑝𝛽𝑝 + 𝑒𝑖 

where 𝑒𝑖 is an unknown measurement error. For 𝑗 = 1, … , 𝑝, 𝛽𝑗 is the effect of the 𝑗-th covariate 

on the response variable, i.e., the change in the response caused by increasing the 𝑗-th covariate 

by 1, while keeping all other variables fixed. With 𝒚 = (𝑦1, … , 𝑦𝑛)′, 𝜷 = (𝛽1, … , 𝛽𝑝)
′
, and 

𝒆 = (𝑒1, … , 𝑒𝑛)′, the equations can be written 

𝒚 = 𝑿𝜷 + 𝒆. 

It is impossible to determine 𝜷, because there are more unknowns than equations. Suppose the 

𝑛 × 𝑝 matrix 𝑿 = (𝑥𝑖𝑗) has rank 𝑝. Let 𝒛 = (𝑧1, … , 𝑧𝑝)′. The least square estimate of 𝜷, 𝜷̂, is 

the unique minimiser of the sum of squares 

𝑆(𝒛) = ∑ |𝒚 − 𝑿𝒛|2

𝑛

𝑖=1

. 

By Theorem 2,  

𝜷̂ = (𝑿′𝑿)−1𝑿′𝒚 

and 𝑿𝜷̂ is the orthogonal projection of 𝒚 on the column space of 𝑿.  
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For 𝜷̂ to be a satisfactory estimate of 𝜷, some conditions on 𝒆 are needed. A sufficient condition 

is that 𝒆 is roughly orthogonal to 𝑉, in the sense that 𝑿′𝒆 ≈ 𝟎. Indeed, the condition implies 

𝜷̂ = (𝑿′𝑿)−1𝑿′(𝑿𝜷 + 𝒆) = 𝜷 + (𝑿′𝑿)−1𝑿′𝒆 ≈ 𝜷. 
The residuals 

𝒅 = 𝒚 − 𝑿𝜷̂ 

are estimates of the errors, and behave like ideal errors: 

𝑿′𝒅 = 𝑿′𝒚 − 𝑿′𝑿𝜷̂ = 𝟎. 
The assumption 𝑿′𝒆 ≈ 𝟎 has to be checked using another set of data where actual errors are 

known. 

Stochastic Error 

So far, our treatment of least square estimation is “deterministic”, in the sense that the 

measurement errors are fixed unknown constants, and we are not concerned about how they 

come about. If they satisfy certain properties approximately, then our estimates are reasonable. 

It was clear to Gauss, one of the originators of least square estimation, that a useful theory of 

estimation is obtained if it is assumed that the errors were generated by certain random 

variables. This probabilistic or statistical view is a significant breakthrough, which has 

profound impact on the quantitative sciences even to this day. 

 

Let us return to the first case, on measuring a constant. If the errors sum to about 0, then 𝑦̅ is 

close to 𝑚. This condition is satisfied if 𝑒1, … , 𝑒𝑛 has an upward trend, going from negative to 

positive. However, the trend should concern us, for it suggests something is wrong with the 

measurement protocol. If the trend persists, 𝑦̅ becomes increasingly larger than 𝑚 as 𝑛 gets 

larger. A similar issue arises if the errors have a systematic trend, which can be revealed by 

plotting the deviations 𝑑1, … , 𝑑𝑛 against 1, … , 𝑛. Perhaps the conditions were changing 

systematically despite the precautions. The protocol should be checked and rectified before 

repeating the measurements. If the errors were generated from a random mechanism, the graph 

should show no trend. This idea lies behind a statistical model for measurement, known as the 

Gauss model (Freedman et al., 2007). 

 

Here are the details for case 1. Let 𝜖1, … , 𝜖𝑛 be independent and identically distributed (IID) 

random variables with E(𝜖𝑖) = 0, and var(𝜖𝑖) = 𝜎2. Define the random variables 𝑌1, … , 𝑌𝑛 by 

𝑌𝑖 = 𝑚 + 𝜖𝑖, 𝑖 = 1, … , 𝑛. 
For 𝑖 = 1, … , 𝑛, let 𝑒𝑖 be a realisation of 𝜖𝑖, which induces the realisation 𝑦𝑖 of 𝑌𝑖 as follows: 

𝑦𝑖 = 𝑚 + 𝑒𝑖, 𝑖 = 1, … , 𝑛. 
The 𝑦’s are known, but 𝑚 and the 𝑒’s are unknown. These are exactly (1): the Gauss model 

generates the equations that started the discussion.   

 

The stochastic assumption on the errors, that they come from IID random variables with 

expectation 0, is clearly an analogue of the assumption that 𝑒̅ ≈ 0. 𝑦̅ is a realization of the 

random variable 

𝑌̅ =
1

𝑛
∑ 𝑌𝑖

𝑛

𝑖=1

 

which has expectation 𝑚. Statisticians say 𝑌̅ is an unbiased estimator, and 𝑦̅ is an unbiased 

estimate. This means that if the whole measurement protocol were repeated many times, the 
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respective estimates cluster around 𝑚. However, there is no assurance that any single estimate 

will be close to 𝑚. Thus unbiasedness is a property of the estimator 𝑌̅, not of an individual 

estimate. This point must be borne in mind if E(𝑌̅) = 𝑚 gives the impression that Gauss model 

has solved the basic difficulty of determining 𝑚. 

 

Nevertheless, the Gauss model offers new insight on the error in the estimate. It implies that 

var(𝑌̅) = E(𝑌̅ − 𝑚)2 =
𝜎2

𝑛
, 

meaning 𝑦̅ gets closer to 𝑚 as 𝑛 → ∞. Furthermore, the magnitude of the error, 𝑦̅ − 𝑚, is 

roughly the standard deviation of 𝑌̅. Thus, a statistician speaks of 𝑦̅ as having a standard error 

(SE) of 
𝜎

√𝑛
. Since 𝜎 is unknown, it has to be estimated from the deviations 

𝜎 ≈ √
1

𝑛 − 1
∑ 𝑑𝑖

2

𝑛

𝑖=1

. 

Given that the deviations sum to 0, knowing any 𝑛 − 1 of them suffices to determine the last 

value. They are said to have 𝑛 − 1 degrees of freedom, and it turns out that 
1

𝑛−1
∑ 𝑑𝑖

2𝑛
𝑖=1  is 

unbiased for 𝜎2. It is a good idea to plot 𝑑1, … , 𝑑𝑛 against 1, … , 𝑛 to check the stochastic 

assumption. If there is a clear trend, it is a sign that the Gauss model may not work well, i.e., 

the estimate and the SE may be unreliable. 

 

Now we outline the general statistical model, known as linear regression. Let 𝑿 be a known 

𝑛 × 𝑝 matrix of rank 𝑝. Let 𝜖1, … , 𝜖𝑛 be IID random variables with E(𝜖𝑖) = 0, and var(𝜖𝑖) =
𝜎2. Define the random variables 𝑌1, … , 𝑌𝑛 by 

𝑌𝑖 = ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

+ 𝜖𝑖, 𝑖 = 1, … , 𝑛. 

Thus 

𝒀 = 𝑿𝜷 + 𝜺 

where 𝒀 = (𝑌1, … , 𝑌𝑛), 𝜷 = (𝛽1, … , 𝛽𝑝)′ 𝜺 = (𝜖1, … , 𝜖𝑛).  Let 𝑒𝑖 be a realisation of 𝜖𝑖, which 

induces the realisation 𝑦𝑖 of 𝑌𝑖, giving the equation 

𝒚 = 𝑿𝜷 + 𝒆. 

The least square estimate of 𝜷, (𝑿′𝑿)−1𝑿′𝒚, is a realisation of the random vector 𝜷̂ =
(𝑿′𝑿)−1𝑿′𝒀. It is striking that the assumption E(𝜖𝑖) = 0 implies 𝜷̂ is unbiased. The analogous 

deterministic assumption, that 𝑿′𝒆 ≈ 𝟎, is more complicated. Since 

var(𝜷̂) = (𝑿′𝑿)−1𝜎2, 

the standard error of 𝛽̂𝑗 is the square root of the (𝑗, 𝑗)-entry of (𝑿′𝑿)−1, multiplied by 𝜎. 𝜎 can 

be estimated as √
1

𝑛−𝑝
∑ 𝑑𝑖

2𝑛
𝑖=1 , where 𝒅 = 𝒚 − 𝑿𝜷̂  are the residuals. Like in the special case, 

it is a good idea to plot 𝑑1, … , 𝑑𝑛 against 1, … , 𝑛 to check that the errors seem random. As for 

the assumption that the errors have expectation 0, and in particular 𝜷̂ is unbiased, the procedure 

must be tested against an external standard. There are many textbooks on the linear regression 

model. Some influential ones are Scheffé (1999) and Rao (2001).  

 

Unlike earlier examples, the linear regression model is not explicitly set up as a measurement 

protocol. However, it is common to interpret 𝛽𝑗 as the effect of the 𝑗-th covariate on the 
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response variable, i.e., it is the expected change in the response upon increasing the 𝑗-th 

covariate by 1, while keeping all other variables unchanged, as if the experimenter has control 

over the covariates. Clearly, this interpretation is not justified if the study is observational, 

where the covariate values are already fixed and merely measured by the investigator. The main 

issue is confounding: the effect of unobserved variables that may be wrongly attributed to the 

𝑝 covariates. For more details on this issue, see the insightful book by Freedman (2005). 

Conclusion 

The solution of the minimization problem in least square estimation via orthogonal projection 

is an algebraic tour de force, which completely dispenses with the intricacies of the calculus 

approach. If the initial influence of least square estimation was mainly scientific, it has recently 

also shone brightly in the underbelly of various machine learning and artificial intelligence 

algorithms, mainly as part of a stochastic view of measurement error. Going forward, its impact 

on a lot of computational activity is expected to be substantial. As such, a legitimate case might 

be made that as far as feasible, the theory should be widely disseminated. Perhaps this article 

can provide some initial impetus for such an endeavor. 

 

Here is a summary of the path taken to orthogonal projection in a Euclidean space. It starts with 

dot product, distance between two points and orthogonality (or perpendicularity), which may 

be familiar in the low dimensions, say from coordinate geometry. Then enter the crucial 

concept of subspace and associated ideas like basis, coordinates, dimension, and orthonormal 

basis, which lead to the general construction of orthogonal projection (Theorem 1). The last 

part deals with requisite facts from matrix algebra for Theorem 2, which relates directly to least 

square estimation in linear regression. Besides featuring orthogonality early, the course 

deviates from the usual narratives in vector space or linear algebra in that subspaces are defined 

as the set of linear combinations generated by some vectors. The concrete definition is a good 

preparation for the standard equivalent definition: 𝑉 is a subspace if (i) 𝟎 ∈ 𝑉, (ii) 𝒗1, 𝒗2 ∈ 𝑉, 

𝜆 ∈ ℝ imply 𝜆𝒗1 + 𝒗2 ∈ 𝑉. Moreover, a basis is defined as a set of generating vectors that 

assign unique coordinates for each vector in the subspace, without going through the concept 

of linear independence. This suffices for grasping the content of the theorems, though it is 

likely necessary to introduce linear independence in order to obtain more streamlined proofs 

of the supporting facts.  

 

The orthogonal projection is an elegant abstraction of intuitive knowledge from low-

dimensional geometry. Whenever a linear regression model is fitted to data, and this happens 

countless number of times everyday, an orthogonal projection is done, from which least square 

estimates may be extracted. Thus, the theory of Euclidean space deserves some degree of 

acquaintance by students of statistics, data science and other quantitative fields. It is also an 

excellent pitstop for those who venture onto the abstract world of vector spaces.  
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